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Introduction
The study of parametric instabilities1 has long been a

topic of interest in laserÐplasma interactions. Reliable
prediction of experimental results requires detailed
knowledge of the plasma characteristics (density, tem-
perature and flow profiles) as well as the laser beam
structure (phase and intensity modulation information).
Hydrocodes such as LASNEX2 and experimental mea-
surements yield data about the plasma, and experimen-
tal measurements3Ð5 and laser-beam propagation codes6

provide relevant information about beam characteristics.
In this article, we examine two physical mechanisms

that demonstrate the effect of beam structure on its
propagation through underdense plasma. First, we 
discuss the effect of transverse plasma flow on beam
deflection. When there is plasma flowing across a
beam, the density depressions created by the pondero-
motive pressure of the light wave are swept down-
stream in the flow direction, and the light, which is
refracted into the density depression, moves down-
stream as well. 

We present a simple analysis of this problem, which
shows that the beam deflection rate scales with the fig-
ure of merit                                                  , where v0 (ve)
is the electron quiver (thermal) velocity, n is the elec-
tron plasma density, and nc is the critical plasma den-
sity at which light reflects (                            , where ωpe
is the electron-plasma frequency and ω0 is the light-
wave frequency). In previous work by Ghosal and
Rose,7 three different expressions for the beam deflec-
tion rate were derivedÑfor the subsonic, near-sonic,
and supersonic regimes of the transverse flow, respec-
tively. We have derived a more general expression,
valid for all transverse Mach numbers M as well as
noncircular Gaussian beams, which reduces to the
results of Ghosal and Rose7 in the three Mach number

regimes with circular beam cross sections. In the limits
of subsonic M < 1, near-sonic M Å 1, and supersonic 
M > 1 transverse flow, our expression for the beam
deflection rate scales as                             ,               , and

, respectively, where     is the ion
damping decrement.

Recent experiments in gas-filled hohlraums con-
ducted on the Nova laser at Lawrence Livermore
National Laboratory (LLNL) show that the laser spot 
on the hohlraum wall is effectively 150 µm closer to the
laser entrance hole (LEH) than in empty hohlraum
experiments.3 We show that this spot motion can be
interpreted as beam deflection occurring near the LEH
by simulating these experiments using F3D,8 a fully non-
linear, 3D fluid hydrodynamics code with paraxial light-
wave propagation. A necessary component in effectively
modeling the experiment is utilizing as input to F3D the
beam structure of the unsmoothed Nova laser beams6 as
well as realistic plasma profiles generated by LASNEX.
Our modeling shows that an unsmoothed Nova beam
undergoes beam deflection at the LEH, which results in
an effective shift in the beam centroid toward the LEH.
When the beam is spatially smoothed by applying 
random phase plates (RPPs),8,9 the centroid shift is
reduced to within laser pointing accuracy. These results,
which simulate the actual beam profiles at the wall, are
in qualitative agreement with experiments, where the x-
ray emission pattern was measured. 

The second physical mechanism we address in this
article is the effect of beam structure on channel forma-
tion by ultraintense laser light, a situation directly
applicable to the hole-boring beam in the fast ignitor
concept.10 We have modified F3D to include relativistic
corrections and the effect of charge separation.11 In 3D
simulations of a Gaussian beam with peak intensity 
5.7 × 1017 W/cm2 and a waist of 15 µm, or of an f/3
beam with the same amount of input power as the

PROPAGATION OF REALISTIC BEAMS
IN UNDERDENSE PLASMA

D. E. Hinkel L. V. Powers

R. L. Berger C. H. Still

A. B. Langdon E. A. Williams

UCRL-LR-105821-98-3

Q v v n n n n≡ ( ) ( ) −( )−
0

2 1
1e c c

n n/ /c pe= ω ω2
0
2

νM M/( ) /1 2 3 2− 1 1 2/ /ν
1 12 1 2/[ ( ) ]/M M − ν



Gaussian, the beam creates a channel through 1 mm 
of plasma with initially uniform density n = 0.1nc for
the Gaussian beam or through 0.4 mm for the f/3
beam in a time t = 15 ps. However, when random
phase aberrations are superposed on an f/3 laser
beam, so that asymptotically the beam is f/3 but at
best focus it is no longer diffraction limited (its spot
size is 15 µm), a channel does not form through 400 µm
of plasma at density n = 0.1nc in a time t = 30 ps.

After this introduction, the second section of this
article addresses beam deflection in two subsections:
first we present our analysis, then the results of our
modeling. The third section is devoted to channel 
formation of ultraintense laser light. In the fourth 
section, we conclude with a discussion of our results. 

Laser-Beam Deflection by
Transverse Plasma Flow

Beam deflection has been a topic of vigorous inter-
est in the past few years because of its potential to
degrade the implosion symmetry of targets in gas-
filled hohlraums. In 1982, Short, Bingham, and
Williams12 analyzed the plasma dispersion relation
with transverse flow, and showed that the spatial
growth rate was enhanced and peaked at values of 
M less than about unity. A series of Nova gas-filled
hohlraum experiments inspired H. A. Rose13 to sug-
gest that transverse plasma flow could explain the
observed deflection of backscattered light. Hinkel,
Williams, and Still14 simulated beam deflection for
laser beams with spatial (RPP) and temporal (SSD15)
beam smoothing. They showed that RPP beams
deflect both supersonically (by forward Brillouin scat-
ter between different k-components of the RPP beam)
and subsonically as well, and that SSD mitigates the
deflection. In this present work, we extend our previ-
ous work by simulating unsmoothed beams, and by
deriving an analytic expression that is valid for circu-
lar and elliptic Gaussian beams for all values of the
transverse flow Mach number M. Our present work,
in the appropriate limits, is in agreement with that of
Ghosal and Rose,7 who performed a linear analysis of
beam deflection. In addition to the gas-filled
hohlraum experiments on Nova, there have been
exploding foil experiments performed on Nova4 and
on the Janus laser5 at LLNL that show an intensity-
dependent beam deflection.

The equations of motion governing the coupling of
the laser light to the density perturbation1 in the paraxial
approximation are

(1a)

and

(1b)

Here, ψ is the light-wave vector potential scaled to
its peak value,       is the fractional density perturbation,
k0 is the laser wave number, ωpe is the electron-plasma
frequency, c is the speed of light, ν is the ion damping
rate, u is the transverse plasma flow, Cs is the sound
speed, v0 is the electron quiver velocity in the peak
light wave electric field, and ve is the electron thermal
velocity. An additional approximation, consistent 
with the paraxial approximation, is that density per-
turbations are transverse to the forward-propagating
light wave.

Beam Deflection: Analysis
A simple 1D argument demonstrates that the plasma

density response is downstream from the light wave
when transverse flow is present. Assume that the light
wave is legislated, i.e., that ψ is known and given. Then,
in steady state, a 1D version of Eq. 1 takes the form

(2)

Eq. 2 can be integrated once (for constant u), giving

(3)

A local density minimum means that                   , and thus

(4)

In the absence of damping, the minimum of the
density profile coincides with the maximum of the
ponderomotive potential. Where the density has a
local minimum and where ν > 0 and u > 0, we have 

. Thus, the density well does not line up with
the peak in the ponderomotive potential; rather, it is
displaced downstream from the potential maximum
where                  .

It now remains to show that the light wave is
refracted into the displaced density well, thereby mov-
ing downstream as well. We obtain equations for the
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beam centroid and the beam width by taking intensity-
weighted moments of Eq. 1a,

(5a)

and

(5b)

where  ,

, etc.

Eq. 5a describes the beam centroid motion as a func-
tion of propagation distance. The transverse density 
gradient refracts the light to regions of lower electron
density. Eq. 5b governs the beam width as a function of
propagation distance. As the beam propagates through
plasma, the beam width will increase if diffraction 
(first term on right-hand side of Eq. 5b) dominates self-
focusing (second term on right-hand side of Eq. 5b), and
it will decrease if self-focusing dominates diffraction.16

We envisage three regimes for beam deflection. Well
below the critical power for self-focusing, where the
beam width is not modified by ponderomotive effects,
Eq. 5a can be integrated in the z direction using the
unperturbed beam width. In this limit, test calculations
using our code F3D show agreement with our analytic
results. Approaching critical power, a self-consistent solu-
tion of Eqs. 5a and 5b is required to determine the beam
deflection rate. Above critical power, a self-consistent
solution for the beam width will determine the deflection
rate up to the point where beam breakup occurs, beyond
which a single-beam model no longer applies.

It is beyond the scope of this present work to self-
consistently evolve the beam width. Therefore we 
shall legislate a beam width and focus our attention on
solving Eq. 5a.

We outline the methodology for solving Eq. 5a by
first solving for , where, again, the brackets denote
an intensity-weighted average. By Fourier transform-
ing Eq. 1b and solving for , we find that14

(6)

where                    is the transverse Mach number (here
we have assumed that the flow is in the x direction), 

is the ion damping decrement, and g(w) is
the Fourier transform of evaluated at k = w.
Similarly, when the Fourier transform of Eq. 1b is
substituted into Eq. 5a, we obtain

(7)

Eqs. 6 and 7 can be integrated over angle for any
wave field g that can be expanded in a FourierÐ
Bessel series. However, for definiteness, we assume

and

, 

i.e., the beam field is a Gaussian in real space with beam
width σx in the x-direction and σy in the y-direction.

It is then easy to perform the radial portion of the
integrands of Eqs. 6 and 7, yielding
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where                                                     and                              . The above expressions are valid through order      , 
i.e., corrections of order                have been dropped. The beam eccentricity is measured by . Note that
in the above expression, the component of        that is nonzero is that in the flow direction, i.e.,      .

If we use the identity , make the change of variable φ= 2θ, and integrate about the unit
circle by setting z = exp(iφ), the expression for          can be determined by summing over the residues inside the
unit circle,

(10)

To determine the beam deflection rate, we perform the integration in Eq. 9 by expanding for small ellipticity,
i.e., . Then, along the unit circle, the second term in the square brackets of the numerator of Eq. 9 is small
compared to the first, or . Summing over the residues, we then obtain

(11)

Figure 1 depicts vs Mach number for both a
circular beam (black curve), where σy = σx, and for an
elliptic beam (gray curve), where σy = 2σx. In both
cases, the density response near M = 1 is almost triple
the response at M = 0. This demonstrates that the pro-
cess of filamentation14 is enhanced by near-sonic trans-
verse flow.

The density response of the elliptic beam is slightly
greater than that of the circular beam for ε2 > 0 around
the sonic surface. As σy becomes large compared to σx,
we recover the 2D limit, where, for M > 1, the density
response is positive, i.e., there is a density enhance-
ment rather than a density cavity.

In the subsonic regime, for a circular beam, where 
, M < 1, and ε = 0, the expression for 

as given by Eq. 10 reduces to

(12)
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For near-sonic flow, we evaluate Eq. 10 with M = 1
for a circular beam to find

(13)

i.e., the density response for near-sonic flow is a reso-
nant response that is limited by the damping, or, in 
the limit of weak damping, would be limited by non-
linear effects.17 For supersonic transverse flow, where 

, we find that Eq. 10 reduces to

(14)

The density response of an elliptic beam is qualita-
tively different from that of a circular beam in the
supersonic regime. When the beam is circular, the 
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density response is always negative. However, when
the beam is elliptic, such that σy > σx, i.e., the beam is
narrower in the flow direction, the density response
changes sign, becoming positive as it is in the σx = 0
limit of a line-focused beam.

In Figure 2, we plot the beam deflection rate vs
Mach number for a circular beam (black curve) and an
elliptic beam (gray curve). (In the circular beam limit,
where , only the first term in the large curly
bracket of Eq. 11 survives.) The largest beam deflection
rate occurs for near-sonic transverse flow. In the sub-
sonic regime, 

(15)

Subsonically, the deflection rate scales linearly with the
damping decrement and with Mach number, and
increases as .

In the near-sonic regime, for a circular beam, Eq. 11
reduces to

(16)

As with the density response, the beam deflection rate
exhibits resonant behavior near M = 1, which is limited
by the inclusion of damping.

This expression can be integrated once when the
density profile is constant, yielding

(17)

where is the deflection angle in radians. If the hot
spot length Ls, which for a Gaussian beam is the
Rayleigh length, is long compared to the transverse-
flow scale length Lu, then in the above equation, L =
Lu, i.e., the transverse-flow scale length is the limiting
length in the problem. If Ls is short compared to Lu,
then Ls is the length in question. For an RPP beam, 

and , where f is the f-number of the
optic, so
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(18a)

and

(18b)

This scaling does not account for multispeckle phe-
nomena in an RPP beam, where light leaving one den-
sity depression can enter another density depression
and continue to get swept downstream over a length
longer than Ls.

Finally, in the supersonic regime, Eq. 11 takes the
form

(19)

For              , the beam deflection rate scales as 1/M2,
and is independent of the damping decrement. In all
three regimes, the beam deflection rate scales with the
figure of merit . In these lim-
iting regions, our beam deflection rate results are in
agreement with those of Ghosal and Rose.7

For a single Gaussian hotspot with circular cross
section focused at z = z0, Eq. 11 reduces to

(20)

Here, v0 and σ0 are evaluated at the focus, z = z0.
For constant density and flow, this expression can

be integrated to give the total deflection of the
Gaussian beam:

(21)

The above results, depicted in Figures 1 and 2, indicate
that we should concentrate our simulation efforts near
the M = 1 surface, where both          and the deflection
rate peak.

In the weak damping limit, where a steady state is
not reached, one would expect subsonic deflection
from transient effects and self-induced bandwidth
rather than from damping, and near M = 1, nonlinear
effects17 would dominate the physics. In the experi-
ments modeled in the next section, the plasma is com-
posed of CH, with a damping decrement . In
this regime we anticipate subsonic and supersonic
deflection with the M = 1 resonance limited by damping.

Beam Deflection: Modeling Results
As mentioned earlier in this article, gas-filled

hohlraum experiments on the Nova laser3 show an
effective spot motion of 150 µm toward the LEH that is
reduced to 35 µm when RPPs are used on the laser
beams. Near peak laser power, the plasma density and
transverse flow profiles calculated by LASNEX2 are
depicted in Figure 3. The transverse flow profile is
sheared, and is near sonic with a scale length of about
600 µm at the LEH. The plasma density is modeled as 

, where λ0 = 0.351 µm.
Here, z is chosen such that ne/nc = .01, where M = 1.
The corresponding electron temperature is Te Å 3 keV.
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It remains to specify the beam structure. The simu-
lated unsmoothed Nova beam6 1 mm beyond best
focus, which is the unsmoothed beam plane at the LEH,
is markedly different in structure from the simulated
RPP Nova beam6,8,9 at best focus, which is its beam
plane at the LEH. Both beams are f/4 and have similar
average peak intensities. The speckle statistics of the
beams are the same, but the unsmoothed Nova beam
contains large coherent pieces, as well as large voids,
which give rise to sub-spot-scale intensity modulations
upon which the speckle statistics are superposed. 

The F3D code models the speckle statistics of a
beam about a given average intensity. Computational
limitations inhibit modeling of the entire beam in one
simulation (250 µm × 250 µm × 1000 µm). Thus, we
have taken the unsmoothed and RPP beams, and aver-
aged the intensities in the initial beam cross section on
a 28 µm × 28 µm spatial scale. Each 28 µm × 28 µm
piece of the beam then has an average intensity at
which a simulation is performed. 

These spatially smoothed average intensities are 
plotted in Figure 4. The peak value for the RPP beam is 
3 × 1015 W/cm2, as opposed to 1 × 1016 W/cm2 for the
unsmoothed beam. An F3D simulation was performed at
each spatially smoothed average intensity in the beam
over a propagation distance of 350 µm. At z = 350 µm,

each piece of the beam is placed back in its original beam
position, and the entire beam is paraxially propagated
through 1 mm of plasma at density n = 0.1nc, roughly the
distance from the LEH to the wall. The intensity distribu-
tion vs wall position of the RPP and unsmoothed beams
is plotted in Figure 5. The peak of the RPP beam is
located within 50 µm of where it was pointed, whereas
the centroid of the unsmoothed beam is ~100 µm
closer to the LEH than it was pointed, in agreement
with experimental results. Moreover, the general struc-
ture of the predicted laser intensity on the wall, of a
wide ÒplateauÓ or ÒshoulderÓ in the flow direction, is
in agreement with the x-ray emission profile measure-
ments. Thus we see that it is the difference in the inten-
sity distributions of the beams, i.e., the beam structure,
that accounts for the change in effective wall position
for unsmoothed vs RPP beams.

A secondary feature that also enhances the deflec-
tion of the unsmoothed beam arises from the focusing
geometry. The unsmoothed f/4 Nova beam is focused
1 mm outside the LEH, and in the beam plane at the
LEH, the hot spots in the beam are more accurately
described by f/6 speckle statistics. Because an f/6
speckle is longer [by a factor of (3/2)2] and wider [by a
factor of (3/2)] than an f/4 speckle, the spatial region
of a given hot spot over which beam deflection can
occur is larger, thus yielding more beam deflection.
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FIGURE 4. The running sum of the intensity distributions of RPP
and unsmoothed Nova beams vs intensity when the intensity is spa-
tially averaged on a 28 µm × 28 µm scale. The RPP beam has a peak
spatially averaged intensity of 3 × 1015 W/cm2, whereas the
unsmoothed beam peaks at 1 × 1016 W/cm2. (50-00-0898-1707pb01)
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The unsmoothed beam also has a high shoulder off the peak in the
flow direction. (50-00-0898-1708pb01)



thermal filamentation. RFS and plasma heating, which
are included in PIC simulations,19 would act to deplete
the pump and create hot electrons in the channel,
thereby limiting the ability to create a channel. Thus,
these fluid simulations place an upper bound on the
channel depth, and hence on the ability to create a
channel.

We have propagated a 30-ps FWHM (full width at
half maximum) Gaussian beam with peak intensity 
5.7 × 1017 W/cm2 and a waist of 15 µm at best focus
through 1 mm of underdense plasma at density 
ne = 0.1nc and electron temperature Te = 2 keV. The
beam filaments into several pieces, and the main 
(central) filament contains 65 to 70% of the intensity.
The laser beam has self-focused by an order of magni-
tude in intensity, because of both relativistic and pon-
deromotive effects. The central filament plasma
density is at about ne = 0.01nc, and a channel forms
through the entire 1 mm of plasma. We find that this
process occurs for a range of FWHM spot sizes from 
3 to 15 µm.

Figure 6 depicts the x = 0 slice of the laser amplitude
(Figure 6a) and the plasma density (Figure 6b) for an
unaberrated, super-Gaussian f/3 laser beam. Clearly, 
a channel has formed through 400 µm of ne = 0.1nc
plasma after 15 ps. We have ascertained that channel 
formation occurs for a wide range of cone angles, 
from f/3 to f/10.

We have also simulated beams with both random
phase aberrations and spherical aberrations. Figure 7
shows the x = 0 slice of the laser amplitude 
(Figure 7a) and the plasma density (Figure 7b) for 
an f/3 laser beam with random phase aberrations,
which expand the spot size at best focus to 15 µm. In
Figure 7a, we observe 3 hot spots near best focus,
located at z = 180 µm, which have self-focused and
thereby increased the intensity by a factor of 2. In

Channel Formation by
Ultraintense Laser Light

Channeling of intense laser light is crucial to the fast
ignitor concept,10 where light must reach the over-
dense regime. Prior to channeling the intense laser
light, a channel must be created by the Òhole-boringÓ
pulse. We have begun to examine and analyze beam
propagation in underdense plasma in an effort to bet-
ter understand the channel formation process.

We utilize a relativistic form of F3D11 to study chan-
neling. In this form, the index of refraction in the light-
wave equation has been modified according to the
replacement , where ,
with . [Here, A0 is the RMS value of the
vector potential of the light wave.] This accounts for
relativistic corrections to the electron mass. We have
modified the ponderomotive drive in the momentum
equation by making the replacement ,
so that momentum is conserved. At very high intensi-
ties, the ponderomotive drive then scales as
rather than as as it does at moderate intensities
where γ Å 1. Finally, we have implemented a charge-
separation model similar to that of Sun et al.,18 where

. Here, ni is the ionic
density, me is the electronic mass, Z is the ionic charge,
and e is the electronic charge. This charge-separation
model permits the electrons to be blown out of the
channel by the ponderomotive force on very short
(sub-picosecond) time scales, inducing a charge sepa-
ration that then draws the ions out of the channel as
well. On the time scale of the simulations presented
below (30 ps), the charge-separation term has negligi-
ble effect, as the ions have had time to move.

This fluid model does not include such effects as
Raman forward scatter (RFS), plasma heating, or 
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FIGURE 6. The laser amplitude
and plasma density for an
unaberrated, super-Gaussian f/3
beam with ~3 TW of input power.
After 15 ps, the beam has created
a channel through 400 µm of
plasma at density ne = 0.1nc.
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Figure 7b, plasma has been pushed out of the regions
where the beam is most intense. The beam structure,
i.e., the presence of multiple hot spots, locally increases
the intensity, but not globally. Thus relativistic and
ponderomotive self-focusing is limited to the hot-spot
regions, from which plasma density is expelled. With
either random phase or spherical aberrations, a chan-
nel does not form through 400 µm of ne = 0.1nc plasma
in 30 ps, even though the beam contained the same
amount of power (~3 TW) as the diffraction-limited
beam. We thus conclude that aberrated beams do not
channel as effectively as diffraction-limited beams.

Conclusions
In summary, we have shown that a predictive capa-

bility requires a model that contains the important
beam-structure characteristics. We have presented two
examples where the beam structure was essential. 

In the first example, we studied beam deflection
caused by transverse flow. We derived a global for-
mula for the steady-state density response and beam
deflection rate, valid for all Mach numbers. In the
weak damping limit, when a steady state may not be
reached, the effective damping decrement can be
estimated by the magnitude of the transient density
response . In practice, the limit is
never achieved because of residual time-dependent
effects such as transients, self-induced bandwidth, and
background evolution. Also, in the weak damping
limit, nonlinear effects become important in the near-
sonic regime. In the subsonic regime, the beam deflec-
tion rate scales linearly with the damping decrement
and with Mach number, and scales inversely with 

. The density response is independent of
the damping decrement in this regime, and scales
inversely as . Around M = 1, damping limits

the resonant response, and both the beam deflection
rate and the density response scale as . In the
supersonic regime, the beam deflection rate is 
independent of the damping decrement, and scales as 

. Here, the density response is pro-
portional to the damping decrement, and scales as 

. Such analysis can be used to formulate a
reduced description in models where laser propaga-
tion is not treated in detail.2

We have used this information to focus our model-
ing efforts where the transverse flow is near-sonic,
which, in gas-filled hohlraums, is around the LEH.
When the marked difference in the intensity distribu-
tions of the unsmoothed and RPP beams is folded
into our modeling, we find that the intense portions
of the unsmoothed beam deflect more (in agreement
with our figure-of-merit scaling), thereby moving the
wall spot centroid of the unsmoothed beam closer to
the LEH than that of the RPP beam. Our results agree
with the x-ray emission data in gas-filled hohlraum
experiments.3

In our second example, we studied the effect 
of beam structure on channeling of intense laser
beams. We determined that an idealized beam, 
containing only one hot spot with a peak intensity 
at 5.7 × 1017 W/cm2, successfully creates a channel
through underdense plasma at density n = 0.1nc.
However, if a more realistic beam model is used, such
as one containing random phase aberrations but with
the same input power as that of the idealized beam,
we find that a channel does not form. Plasma density
is expelled from the regions where the beam has hot
spots, but builds up between the hot spots. This work
has set in place the required framework to perform
further analysis, such as determining the intensity
threshold as a function of beam structure above
which channel formation occurs.
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FIGURE 7. The laser amplitude
and plasma density for a phase-
aberrated f/3 beam with a spot
size of 15 µm at best focus and
with ~3 TW of input power.
After 30 ps, the beam has failed
to channel through 400 µm of
plasma at density ne = 0.1nc,
whereas a diffraction-limited f/3
beam creates an evacuated chan-
nel within 15 ps.
(50-00-0898-1710pb01)
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